
Modeling the Performance of an Algebraic Multigrid Cycle Using Hybrid
MPI/OpenMP

Hormozd Gahvari∗, William Gropp∗, Kirk E. Jordan†, Martin Schulz‡ and Ulrike Meier Yang‡

∗Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
†Computational Science Center, IBM TJ Watson Research Center, Cambridge, MA 02142

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551
{gahvari,wgropp}@illinois.edu, kjordan@us.ibm.com, {schulzm,umyang}@llnl.gov

Abstract—The rise of multicore cluster architectures has led
to intense interest in using a combination of MPI and OpenMP
to more effectively program these machines. We present a
performance model for hybrid implementation of the solve
cycle of algebraic multigrid (AMG), a popular iterative solver
for large sparse linear systems and a key component of many
scientific simulations. We validate the model on two leading
parallel platforms, and discuss implications for applications
programmed in a hybrid model on future machines.

I. INTRODUCTION

Recent trends in computer architecture have led to the
rise of multi- and many-core architectures. Due to thermal
and power constraints, single-core speeds have stopped ris-
ing, and improvements in performance are mainly achieved
through increased parallelism by integrating more and more
processing cores on a single chip. Consequently, massively
parallel supercomputers will become even more massively
parallel, with future exascale machines projected to have
core counts in the hundreds of millions to billions.

Traditionally, the dominant model for programming
such massively parallel machines has been some form of
message-passing, typically MPI, since it is best suited for
distributed memory architectures. The rise of machines with
multicore nodes, however, has led to an increasing interest
on the part of application developers in incorporating shared
memory programming into previously distributed memory
codes in order to better match the underlying architecture.
One example is the application we are focusing on, algebraic
multigrid (AMG). AMG is a popular linear solver for large,
sparse linear systems of linear equations that performs work
linear in the number of unknowns when it works well,
making it highly suitable for solving large problems on
massively parallel machines. AMG has scaled very well on
the IBM Blue Gene/L [1] and Blue Gene/P [2] platforms,
but has run into problems on multicore clusters [3], [4].

In this paper, we explore the performance difficulties
reported in these studies using a novel performance model
for the hybrid MPI/OpenMP execution of AMG on multicore
architectures. Our model builds upon a performance model
we previously developed for the AMG solve cycle when
programmed entirely in a distributed memory model [5].

We first make an adjustment to this model to improve
its overall fit to the observed performance, and then add
threading aspects to the model to cover the case of hybrid
MPI/OpenMP. We present results on two multicore cluster
architectures, and discuss implications based on the model
for future platforms.

The remainder of the paper proceeds as follows. Section II
summarizes AMG and its performance when programmed
using hybrid MPI/OpenMP. Section III gives an overview of
our existing performance model, then details the additions
we make to cover hybrid execution models. Section IV
presents the results of our validation experiments, and Sec-
tion V discusses the implications of our results. Section VI
discusses related work, and Section VII presents our con-
cluding remarks.

II. ALGEBRAIC MULTIGRID

Multigrid methods are popular means of solving large,
sparse linear systems of equations. Their popularity arises
from ideal computational complexity — when they work
well, multigrid methods solve a system with n unknowns in
O(n) oprations. They work by solving a sequence of much
smaller “coarse grid” problems to accelerate the solution of
the original “fine grid” problem, which is usually quite large.
Multigrid was originally developed for solving problems
on structured grids. Algebraic multigrid (AMG) extends
multigrid so that it can work on problems not defined on an
explicit grid. AMG forms its grids and operators to transfer
between them (restriction to transfer from fine to coarse
and interpolation to transfer from coarse to fine) entirely
from the coefficients of the input matrix. This involves a
setup phase to select grids and to create operators before
the problem is actually solved in the solve phase. A more
detailed description is available in [6].

During the solve phase, a smoother is applied on each
level k. Levels are numbered from finest to coarsest, starting
at 0. The residual is formed and then transferred to the next
coarsest grid (k+1) through multiplication by the restriction
operator. An error correction is determined on the coarse
grid, where it is interpolated back to grid k. One more
smoothing step is performed, and the result is interpolated



up to grid k − 1. Interpolation is accomplished through
multiplication by the appropriate interpolation operator. We
assume a V-cycle, in which there is one progression from the
finest grid to the coarsest grid coupled with a progression
back to the finest grid, but note that our methodology can
be straightforwardly extended to more complicated multigrid
cycling strategies. The classical smoother used for AMG
is the highly sequential Gauss-Seidel iteration. For better
parallel performance, we use a parallel variant called hy-
brid Gauss-Seidel, which involves performing Gauss-Seidel
within a process and performing Jabobi iteration across
process boundaries.

Our experiments use BoomerAMG [7], the parallel AMG
code in the hypre [8] software library. We use HMIS
coarsening [9] with extended+i interpolation [10] truncated
to at most 4 coefficients per row and aggressive coarsening
with multipass interpolation [11] on the finest level.

A. Parallellization

In BoomerAMG, all matrices are stored in a parallel
CSR (compressed sparse row) format, in which the matrix
A is partitioned by rows into matrices Ak, k = 1 . . . p,
where p is the number of MPI processes, and the portion
belonging to each process is stored on that process as
two matrices in sequential CSR format: Ak = Dk + Ok.
Dk contains all entries in Ak whose column indices point
to rows stored on process k. Ok contains the remaining
entries. Matrix-vector multiplication Ax requires evaluation
of Akx = Dkx

D+Okx
O on each process, where xD is the

portion of the vector x stored locally and xO is the portion
that needs to be sent by other processes. Further detail is
available in [12]. OpenMP parallelization is done within MPI
tasks, and accomplished at the loop level using parallel
for constructs, which spawn a number of threads that each
execute a portion of the loop being parallelized (in this case
for loops). The parallelized loops are the ones that perform
smoother application and matrix-vector multiplication.

B. Hybrid Performance

The main challenge to achieving good scalability for
AMG on multicore clusters is performance degradation on
coarse grids. Processes have more communication partners
that are farther away, with much less computation to balance
out the communication as well. This was shown for a 3D
7-point Laplace model problem with 50×50×25 points per
core on Hera, a multicore Opteron cluster with four quad-
core processors per node, in [5].

Using hybrid MPI/OpenMP alleviates these issues to some
degree, but not entirely. Figure 1 plots the time spent at
each level of an average (taken by measuring 10 cycles)
V-cycle when solving the 7-point model problem on Hera
on 1024 cores, using different combinations of MPI and
OpenMP on each node. In the majority of cases, there still
is performance degradation on coarse grids, for the reasons
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MPI x OMP Mix Cyc. Time

16 MPI, no OMP  −  157 ms
8 MPI x 2 OMP    −  110 ms
4 MPI x 4 OMP    −  61.4 ms
2 MPI x 8 OMP    −  81.5 ms
1 MPI x 16 OMP  −  156 ms

Figure 1. Level-by-level timings for an AMG V-cycle when solving the
3D 7-point Laplace model problem. Total cycle times, which are the sums
of the times at each level, are listed in the legend.

given above. The best performance is obtained when using
4 MPI tasks and 4 OpenMP threads per node, i.e., 1 MPI
task per multicore processor/socket. This is the case for
other core counts as well. What is happening is that, while
using OpenMP reduces the MPI traffic, which improves
performance on coarse grids, it also degrades performance
on fine grids. This was found to occur because of inefficient
memory allocation and thread migration between cores when
using OpenMP [3]. Explicitly pinning threads and processes
to cores and sockets combined with a special support library
for memory allocation was able to drastically reduce this
problem, but the mix of 4 MPI tasks and 4 OpenMP
threads per node was still found to yield the best overall
performance. We will discuss OpenMP performance in more
detail later on, but the pinning of threads and processes and
the use of special routines are beyond the scope of this paper.

III. PERFORMANCE MODEL

We previously developed and validated a performance
model for the AMG solve cycle when programmed using
a distributed memory programming model [5]. At its core,
the model is based on a simple latency-bandwidth model
for communication, but then adds communication distance
terms and penalties to take into account multicore issues
and limited bandwidth. The penalties can be “on” or “off”
depending on the target architecture, and in fact, the best fit
to a particular machine will have some penalties in effect
and others not. After giving an overview of this model, we
will build upon it in two significant ways. First, we update
the limited bandwidth penalty to take link contention into
account. This is something the previous model did not do,
but is necessary to characterize the communication tradeoffs
for different process/thread configurations. We then further
augment the model to take threading in the form of hybrid
MPI/OpenMP constructs into account.



A. Distributed Memory Model

The underlying distributed memory performance model
uses a combination of problem-specific information and
machine parameters to ensure its applicability to the widest
possible space of architectures. In the baseline model, com-
munication is modeled as follows: the time to send an
n-element message is Tsend = α + nβ, where α is the
communication start-up time and β is the per-element send
cost. The α term covers both software overhead and latency
involved in message passing, and the β term is connected
to the available bandwidth. The remaining parameters are:

• P – total number of cores
• Ci – number of unknowns on grid level i
• si, ŝi – average number of nonzeros per row in the level
i solve and interpolation operators, respectively

• pi, p̂i – maximum number of sends over all processes
in the level i solve and interpolation operators, respec-
tively

• ni, n̂i – maximum number of elements sent over all
processes in the level i solve and interpolation opera-
tors, respectively

• ti – time per flop on level i
We do not mention the restriction operator separately here,
as in our experiments the restriction operator is the transpose
of the interpolation operator. We also assume one smoothing
step before restricting and one smoothing step after interpo-
lation, which is the default in BoomerAMG.

To model the overall solve cycle, we break it down into a
series of individual steps. If T isolve is the time spent at level
i of the cycle, we have

T isolve = T ismooth + T irestrict + T iinterp.

T ismooth is the time spent smoothing on level i, T irestrict is
the time spent restricting from level i to level i + 1, and
T iinterp is the time spent interpolating from level i to level
i− 1. If there are L levels, the cycle time is given by

TAMG
solve =

L−1∑
i=0

T isolve.

We now consider each of these individual steps. At level i
in the cycle, we have to first run a smoother sweep, form the
residual, and restrict it to level i+ 1 if i is not the coarsest
level. Eventually, the computation will return to that level,
requiring another smoother sweep followed by interpolation
of the correction to level i−1 if i is not the finest level. All
of these operations are either matrix-vector multiplication
(residual formation) or a very similar operation. We therefore
model each operation as a matrix-vector multiply using the
appropriate operator, with two flops per matrix entry. The
smoothing time at level i is

T ismooth = 6
Ci
P
siti + 3(piα+ niβ).

The time spent restricting from level i to i+ 1 is given by

T irestrict =

{
2Ci+1

P ŝiti + p̂iα+ n̂iβ if i < L− 1
0 if i = L− 1.

The time spent interpolating from level i to i − 1 is given
by

T iinterp =

{
0 if i = 0

2Ci−1

P ŝi−1ti + p̂i−1α+ n̂i−1β if i > 0.

To this baseline model, we make the following additions
to reflect issues observed on real machines. To reflect
messages traveling long distances, we add a γ term that rep-
resents the delay per hop. In the baseline model, this change
is reflected by replacing α with α(h) = α(hm)+(h−hm)γ,
where h is the number of hops a message travels, and hm is
the smallest possible number of hops a message can travel
in the network. We assume h is the diameter of the network
within the job’s partition to account for routing delays. hm
depends on the network topology and is 1 in torus or mesh
networks, and 2 in fat-tree networks where a message has
to travel through 1 switch or over 2 links.

There are also bandwidth limitations. Peak hardware
bandwidth is rarely achieved in message passing under
ideal conditions. What is typically achievable is itself rarely
achieved under non-ideal conditions. To take this into ac-
count, we multiply β by Bmax

B , where Bmax is the peak
aggregate per-node bandwidth, and B is the measured band-
width corresponding to β (B = 8

β with β the time to send
one double-precision floating point value).

An additional issue on multicore nodes is increased con-
tention to get onto the interconnect, and, if the network itself
is not built to handle the resulting traffic, also contention at
each hop when routing messages. To capture these effects,
we multiply either or both of the terms α(hm) and γ
described above by

⌈
cPi

P

⌉
, where c is the number of cores

per node, and Pi is the number of active processes on level i.
By active processes, we mean ones that have not “dropped
out” due to lack of work, which happens in AMG when
coarsening has proceeded to a point where some processes
have no unknowns left in their respective domains.

B. Updated Bandwidth Penalty

Our baseline distributed memory model produces an ac-
curate fit to the communication performance on an IBM
Blue Gene/P with only the γ term and the β penalty in
effect. However, on other machines, there was a tendency
for the best-fit model to underpredict the runtime. To remedy
this, we take into account another situation that the previous
model ignored, but that is of increasing importance as the
number of cores per node increases, namely contention from
messages sharing links. If m is the total number of messages
in the network, l is the number of links, and β̂pen is the β
penalty described in the previous section, then the updated
β penalty is βpen = β̂pen + m

l . This adds the reduced



bandwidth from link contention to the reduced hardware
bandwidth represented by the prior β penalty. We found
this to overpenalize on Blue Gene/P, which is an indication
of how well its interconnect handles traffic as well as its
moderate core count, but as we will see in the validation
section, it does well on the machines we evaluate in this
paper.

C. Extension to Hybrid MPI/OpenMP

The model in its current state does not include the ability
to express conditions arising from hybrid programming with
MPI and OpenMP. Given that past work has found this to
be either beneficial for or detrimental to AMG on multicore
clusters, depending on the architecture and the mix of MPI
tasks and OpenMP threads being used, we want to better
understand the reasons for this performance behavior, with
the goal to optimize AMG on current platforms and to make
projections of its efficiency on future machines.

Our first step is to modify the communication parameters
of the distributed memory model to take into account that
not every core will be running an MPI task. The network
parameters α, β, and γ do not change. The communication
counts and numbers of active processes are assumed to
change based on the reduced number of processes, so we
do not explicitly modify them. We do not explicitly modify
the limited bandwidth penalty either, as it depends on the
number of messages. We are then left with updating the
multicore penalties to α and γ according to the number of
MPI processes per node instead of the number of cores, as
there will be fewer processes contending for resources in
the interconnect. Instead of the multiplier in the distributed
memory model, we use

⌈
tPi

p

⌉
, where t is the number of MPI

tasks per node and p is the total number of MPI processes.
This reduces to the multicore penalty in the distributed
memory model in the MPI-only case.

We now consider issues specific to threading. One is
limited memory bandwidth. Unlike the message passing
case, there is no definite partitioning of the memory. Threads
can contend with each other when accessing memory that
is shared by multiple cores, which reduces the available
memory bandwidth. To take this into account, we penalize ti
as follows. Let bj be the memory bandwidth per thread for j
threads. We define pmem = b1

bj
to be the memory bandwidth

penalty for j threads, and multiply ti by pmem.
Furthermore, the operating system can migrate threads

across cores. If these cores are on different sockets or
connected to separate memory controllers, then this can
cause a significant decline in on-node performance if there
are enough threads. This was observed in [3] and [4] when
there was less than one MPI task per socket. To take this into
account, we penalize with the worst case in mind – if pnode
is the number of processors on a node, and j is the number
of threads, then we define the processor penalty pproc to be

Table I
SUMMARY OF CHANGES TO PERFORMANCE MODEL TO INCORPORATE

OPENMP.

Without OpenMP With OpenMP

α penalty α(hm)←
⌈
cPi
P

⌉
α(hm) α(hm)←

⌈
tPi

p

⌉
α(hm)

γ penalty γ ←
⌈
cPi
P

⌉
γ γ ←

⌈
tPi

p

⌉
γ

ti penalty none ti ← pmempprocti

max
{
1, j

pnode

}
. We multiply ti by this penalty as well. The

overall penalized value of ti is then obtained by multiplying
by both penalties: ti ← pmempprocti.

There is also overhead involved in spawning threads,
but we do not consider this. Runs of the EPCC OpenMP
benchmark [13] found this to be in the microsecond range,
so it is dominated by the time spent in MPI calls. Table I
summarizes the changes made to the model to incorporate
OpenMP.

IV. MODEL VALIDATION

A. Machine Descriptions

Hera is a Linux cluster at Lawrence Livermore National
Laboratory consisting of 800 compute nodes, with four
quad-core 2.3 GHz AMD Opteron processors per node. The
batch scheduler allows for a maximum of 256 nodes to
be allocated to a single job. The nodes are connected by
an Infiniband interconnect organized as a two-level fat-tree
topology. The 72 first-level switches are each connected to
12 nodes, and have 12 more ports that connect to the second-
level switches. There are four second-level switches, so three
ports per first-level switch are connected to each second-
level switch. The hardware bandwidth between nodes is 2.5
GB/s. The specific version of Linux being run is CHAOS,
a specialized version of RHEL5 adapted for HPC. All
experiments use gcc 4.1.2 as the compiler, and the MPI
implementation is MVAPICH v0.99.

Jaguar is a Cray XK6 system at Oak Ridge National
Laboratory. It was previously a Cray XT5, but was upgraded
at the beginning of the year, and will have its name changed
to Titan at the end of the year. There are 18,688 compute
nodes, with one 16-core 2.2 GHz AMD Opteron 6200 Series
processor per node. There are also 960 NVIDIA Tesla
X2090 GPUs, but we do not consider them here. The nodes
are connected by a 3D torus interconnect, with a hardware
bandwidth of 20.8 GB/s between nodes. All experiments use
the PGI compiler, version 12.1, and the MPI implementation
is Cray’s native MPI.

B. Experimental Setup

On both of the architectures tested, we ran 10 AMG solve
cycles and measured the amount of time spent in each level,
dividing by 10 to get a measure of the time spent in each
level for an average solve cycle. As a test problem, we used a
3D 7-point Laplace problem on a cube, with a problem size



Table II
MACHINE PARAMETERS α, β , AND ti .

Hera Jaguar
α 1.31 µs 1.68 µs
β 6.08 ns 1.59 ns
γ 2.68 µs 57.5 ns
t0 5.12 ns 3.38 ns
t1 1.39 ns 1.30 ns
t2 1.09 ns 0.928 ns

of 50× 50× 25 points per core. The mapping of MPI tasks
to nodes used were the defaults on each machine, which in
both cases was a block mapping, where each node is filled
with MPI ranks before moving to the next one.

C. Machine Parameters

1) Distributed Memory Model: We determine α and β
from best-case latency and bandwidth measurements taken
by the latency-bandwidth benchmark in the HPC Challenge
suite [14]. To determine γ, we start with the formulation of
α as a function of the number of hops h in the models that
take distance into account:

α(h) = α(hm) + γ(h− hm)

As α(hm) is the latency for the shortest possible message
distance, we set this to be the minimum latency reported in
the benchmark results, which is our value for machine α.
The maximum latency possible is

α(D) = α(hm) + γ(D − hm),

where D is the diameter of the network. We set α(D) to
be the maximum latency reported in the benchmark results.
Then

γ =
α(D)− α(hm)

D − hm
.

We measure the computation rates ti using a serial
sparse matrix-vector multiply benchmark [15] run on one
node, simultaneously on all the cores to properly stress the
memory system. We obtain specific values for the first three
levels (t0, t1, and t2), and use the value obtained for t2 to
approximate ti on all coarser levels. The obtained values are
determined from the observed computation rate for matrix-
vector multiplications matching the dimension and number
of nonzero entries per row of the solve operators for the
respective levels. The values for α, β, γ, and ti appear in
Table II.

2) Updated Bandwidth Penalty: Computing the updated
penalty to β requires computing the number of links in use.
On Jaguar, the number of available links is simply three
times the number of nodes in use due to the 3D torus
interconnect. On Hera, the number of available links depends
on which nodes on the fat-tree are given by the scheduler.
The number of first-level links in use will always be N ,
where N is the number of nodes in the job’s partition. The

Table III
MEMORY BANDWIDTH PER THREAD REPORTED BY STREAM TRIAD

FOR VARYING NUMBERS OF OPENMP THREADS.

Hera Jaguar
1 OpenMP thread 3.05 GB/s 6.91 GB/s
2 OpenMP threads 2.95 GB/s 3.87 GB/s
4 OpenMP threads 2.83 GB/s 2.79 GB/s
8 OpenMP threads 1.37 GB/s 1.41 GB/s

16 OpenMP threads 1.23 GB/s 1.40 GB/s

number of second-level links in use, however, can vary.
The minimum possible is 4

⌈
N
12

⌉
, which assumes all the

nodes connected to a first-level switch are allocated before
moving on to the next switch. The maximum possible is
4min{N, 72}, which assumes a cyclic allocation of nodes.
We assume that the median number of second-level links
are in use, and multiply this number by 3 to take into
account the increased link bandwidth on the second level.
The total number of links we assume to be in use is then
N + 6

(⌈
N
12

⌉
+min{N, 72}

)
.

3) Hybrid Model: We use the STREAM Triad bench-
mark [16] to compute the memory bandwidth per thread
when using OpenMP, averaging the reported result over 10
trials. The results, for each machine, are in Table III. The
number of multi-processors or sockets per node is 4 on Hera,
but on Jaguar, it is only nominally 1. The AMD Opteron
6200 series processor actually consists of two dies with eight
cores per die [17], so we treat it as a pair of eight-core
processors.

D. Validation Results

The baseline model, with and without taking communi-
cation distance into account, and the possible combinations
of penalties to α, β, and γ give us a total of nine possible
performance scenarios. We show results for the most relevant
six, which are the baseline model, the model with the γ
term, and all models with a penalty to β, labeled in plots as
follows:

1) Baseline model (α-β Model)
2) Baseline plus distance (α-β-γ Model)
3) Baseline plus distance and bandwidth penalty on β (β

Penalty)
4) Baseline plus distance, bandwidth penalty on β, and

multicore penalty on α (α, β Penalties)
5) Baseline plus distance, bandwidth penalty on β, and

multicore penalty on γ (β, γ Penalties)
6) Baseline plus distance, bandwidth penalty on β, and

multicore penalties on α and γ (α, β, γ Penalties)
These six are the most relevant because they include the two
baseline scenarios with no extra penalties, and all of the best
fits to the data in the distributed memory case had at least
a penalty to β [5].

We apply these models to AMG and compare them with
the actual measured performance, which is shown as a solid



black line in the following figures. Of the models, which are
plotted in colored lines with markers, the best fit is shown as
a solid line, while the others are shown as dotted lines. As
the penalties all deal with message-passing issues, the best
fit is not allowed to add penalties when moving to fewer
MPI tasks. The coarsest grid, which is solved using Gaussian
Elimination instead of smoothing, is not shown.

1) Updated Bandwidth Penalty: Figure 2 shows the re-
sults of the model with the updated β penalty. Like before,
the best fit on Hera comes from the application of every
penalty. Average cycle time prediction accuracy for the core
counts tested increases from 89% to 95%.

On Jaguar, the best fit model is the α-β-γ model with
the bandwidth penalty on β. This is a departure from
the previous Cray XT5 machine, on which all penalties
applied [5]. This reflects a dramatic improvement in the
interconnect, which was upgraded moving from XT5 to
XK6. The average cycle time prediction accuracy is 78%.
It would be higher but for the measured t0 and t1 terms
underpredicting the computation time on the fine levels.

2) Hybrid Model: The hybrid model results are in Fig-
ure 3 for Hera, and Figure 4 for Jaguar. The titles show
the total number of MPI tasks and the number of OpenMP
threads per node, the product of which is the number of
cores.

On Hera, the best fit model applies all penalties except
for two cases. For 128 MPI× 8 OpenMP, the best fit came
from the α-β-γ model with the bandwidth penalty on β.
In the case of 16 OpenMP threads per node, there were
no multicore penalties. Consequently, the best fit model is
again the α-β-γ model with the bandwidth penalty on β.
The overall fit was very good, with the cycle time prediction
accuracy at worst 85%, and usually well above 90%.

On Jaguar, the best fit model is the α-β-γ model with the
bandwidth penalty on β. Cycle time prediction accuracies
were very good, again at least 85% and usually above 90%,
except for the case of 8 OpenMP threads per node. In
that case, the memory bandwidth penalty was excessive,
predicting more of a slowdown than what the actual results
indicated. The fits are not as good as they were on Hera,
though. The results tend to combine an overprediction of
runtime on the finest level with an underprediction of
runtime on the majority of the coarse levels. Cycle time
prediction accuracies for each possible mix of MPI tasks
and OpenMP threads are given in Table IV.

V. IMPLICATIONS

Our results have important implications for AMG and
other applications on future supercomputing platforms that
will have even more cores overall, per-chip, and per-node.
Per-chip node counts were envisioned by one well-known
study to reach the thousands [18], and a later study specific
to future exascale systems [19] discussed designs with over
700 cores per chip. Hera had an interconnect unable to

Table IV
CYCLE TIME PREDICTION ACCURACIES OF THE PERFORMANCE MODEL

FOR VARYING ON-NODE MIXES OF MPI TASKS AND OPENMP THREADS.

Hera 1024 Cores 3456 Cores
16 MPI, no OpenMP 97.79% 91.91%
8 MPI × 2 OpenMP 85.31% 95.57%
4 MPI × 4 OpenMP 90.72% 95.89%
2 MPI × 8 OpenMP 99.74% 92.42%

1 MPI × 16 OpenMP 95.95% 85.06%

Jaguar 1024 Cores 8192 Cores 65536 Cores
16 MPI, no OpenMP 73.14% 79.27% 78.72%
8 MPI × 2 OpenMP 93.72% 91.14% 85.48%
4 MPI × 4 OpenMP 96.18% 98.59% 98.76%
2 MPI × 8 OpenMP 52.84% 63.16% 78.56%
1 MPI × 16 OpenMP 85.32% 94.42% 98.35%

effectively handle message passing traffic from nodes with
just 16 cores, which was illustrated by the applicability of
the model with all network penalties applied. This was not
the case for Jaguar, but even so, it is unlikely to expect
interconnects to scale so that they can handle message
passing traffic from nodes with hundreds or thousands of
cores.

This makes the addition of a shared memory program-
ming model like OpenMP very attractive as a means of
performance improvement through reducing network traffic.
It would ideally serve as an improvement over on-node
message passing as well, but this was not the case for the
two machines we ran on. The single-node performance of
AMG on Hera is best without using OpenMP [3], and in
our runs of the AMG solve cycle on Jaguar, the MPI-only
performance was better than that of any of the runs that used
OpenMP. The threading penalties in our performance model
give two reasons for this: limited memory bandwidth and
thread migration. The former is an issue inherent to the pro-
gramming model arising from threads contending for shared
resources. The latter can be controlled, but two studies that
explored this still found that the best performance came from
using some mix of MPI tasks and OpenMP threads other
than entirely OpenMP within nodes [3], [4]. Both caused
slowdowns on the computation-heavy fine grids that in all
cases on Jaguar, and when using more than 4 OpenMP
threads per node on Hera, more than offset any gains from
reduced network traffic.

Our findings suggest that on future machines, the optimum
will be some mix of message passing and shared memory
programming that does not use only threading within nodes.
Performance models can play a large role in determining
the mix that results in the best performance for a particular
problem on a particular machine. On machines like Hera,
however, the entire set of network penalties applied for
most mixes that used message passing within nodes. Thus,
the contention issues we reported earlier that impede the
scalability of AMG [5] will still remain. Ultimately, algo-
rithmic changes that reduce the amount of communication
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Figure 2. Performance model results using the new β penalty on Hera (top row) and Jaguar (bottom row).

will be necessary to ensure the scalability of AMG to future
platforms. Using a hybrid programming model alone, even
though it is a better fit to the architecture, will not be
enough. The same issues will apply to other applications. An
appropriate choice of programming model will be important,
but it cannot be expected to solve all scalability issues.

VI. RELATED WORK

There has been substantial interest in hybrid programming
over the years, dating back to the emergence of clusters
of shared memory multiprocessors. [20] provides a good
overview of the issues, and proposes a set of four parameters
to assess and model the performance of a hybrid code
versus an MPI code. We went in a different direction with
our approach for two reasons. The main reason was that
we were building on an existing performance model, on
which we wanted to base our hybrid model. Another reason
was the goal to keep the number of introduced parameters
as small as possible for simplicity. Our model also adds
two parameters for hybrid modeling instead of four. [21]
developed a performance model for hybrid applications
based on the parameters in [20]. Their model relies on static
analysis of the application being modeled, tying it to codes
rather than algorithms.

Two other studies also developed performance models
for hybrid applications [22], [23]. The former presents a
large framework that involves obtaining relevant traces of
a code and then instrumenting and measuring that code

on a machine, enabling prediction of the effects of adding
OpenMP to an all-MPI code and the effects of running a
hybrid code on a larger version of the machine on which
measurements were taken. The latter takes the approach
of combining models of the OpenMP and MPI aspects of
a hybrid application. It relies on measurements of MPI
operations on the target architecture for modeling the MPI
component rather than communication counts and machine
parameters. Validation results are reported on runs using at
most 512 cores.

VII. CONCLUSIONS

To aid our understanding of hybrid programming and
its usefulness in scaling AMG and other applications, we
developed a performance model for the AMG solve cycle
when programmed in hybrid MPI/OpenMP. Our model is
based on our prior performance model of AMG for dis-
tributed memory programming models. We updated one of
its architectural penalty terms, which resulted in an improved
overall fit to observed performance, and included the ability
to model multiple threads per MPI process. Our results high-
light major factors behind hybrid application performance,
and underscore the need for algorithmic change to ensure
that AMG scales to future supercomputing platforms.

Future work will be along two main thrusts. The first
is extending the model to cover another emerging feature
on future supercomputers, namely simultaneous multithread-
ing, which targets cores hosting multiple hardware threads.
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Figure 3. Hybrid model results on Hera.

This is, for example, a key component of the IBM Blue
Gene/Q architecture [24] and its first installation, the 20
petaflop Sequoia system [25]. Modeling and analyzing this
16 core/64 hardware thread per node system will be key to
help application developers exploit this machine to its fullest.
The second is using the model to predict the effectiveness on
future machines of hybrid programming and its combination
with algorithmic changes currently underway to address the
scalability issues we have seen with AMG on multicore
clusters. Our ultimate goal is for AMG to scale effectively
to future exascale computers.
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